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ABSTRACT 

Mangroves are recognized as a highly valuable resource due to their provision 

of multiple ecosystem services. Mapping and monitoring mangrove ecosystems is a 

crucial objective for tropical region. Thai Binh province is one of the most important 

mangrove ecosystem in Vietnam. The mangrove ecosystem in this area faces the threat 

of deforestation from urban development, land reclamation, increase in tourism and 

natural disasters (global warming). On other hand, a large mangrove area are planted 

in this area. The aim of this research to detect the changing of mangrove area and 

mapping the aboveground biomass in Thai Binh province. It also aimed at determining 

the changes that has occurred over the years 1998, 2003, 2007, 2013 and 2018. The 

land use land change map was obtained by using supervised classification. The 

accuracy assessment for the classified images of 1998, 2003 and 2007, 2013 and 2018 

are 93%, 86%, 96%, 94% and 91% respectively with kappa of 0.88, 0.79, 0.93, 0.91 

and 0.87. The mangrove cover in 1998 was 5874.93ha, in 2003, it increased to 

5935.77ha but in 2007, it decreased to 4433.85ha, increased to 6345.09 in 2013 and 

further increased in 2018 to 6587.88ha. This study also estimate AGB by using 

vegetation indices. In 1998, the total AGB in this study area are 62880 ton and in 2018 

are 187990ha with the root mean square error (RMSE) = 7.2 ton/ha.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Mangroves are the complex ecosystems that have the unique condition. It has 

specific characters of flora and fauna, which live in land and salt water habitats in the 

same time between tidal and low tide boundaries. Mangroves are amongst the most 

important and productive coastal resources that link terrestrial and marine systems and 

provide valuable ecosystem goods and service (Alongi, 2002).They typically dominate 

in the coastal zone of low energy tropical and subtropical coastlines. Mangroves not 

only importance role in ecosystem but also define an economic resource for the local 

communities (Kamal & Phinn, 2011). Mangroves can be stabilizing shorelines and 

having devastating impact of natural such as dissipated the incoming wave energy, 

trapping sediment in their roots, protecting the land behind, becoming a barrier against 

wind. They also provide important ecological and social well-being though ecosystem 

services. They provided essential nursery habitat for fish, crabs, and shrimp (Giri, 

Pengra, Zhu, Singh, & Tieszen, 2007).  

Mangroves forest are the highest biodiversity in all of coastal wetland. 

Mangroves plant are salt tolerant species, thrive in water that varies in tonnage and is 

rich with nutrients. According Aubreville (1970) ―mangroves‖ or ―mangals‖ are 

coastal tropics and found along the sea border, lagoon and river bank where is 

submerged in brackish water or cover by salt water in high tide (Puri, Gupta, Meher-

Homji, & Puri, 1989). Mangroves represented by the concept: mangrove are 

community of evergreen trees and shrubs of different mangrove species but they have 

the similar about physiological characteristics and their structure adapt to coastal line 

habitat and tidal activity, that communities are often growth in tropical and sub-

tropical area (Syed, Hussin, & Weir, 2001). Mangrove forests trap sediments flowing 

down rivers and off the land by virtue of their dense root system and this helps 

stabilize the coastline and prevents erosion. 

Likewise mangroves not only importance role in ecosystem but also define an 

economic resource for the local communities (Rönnbäck, 1999). For instance, just the 
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fact that many peoples want to live in coastal regions because of economically and 

aesthetically. The resources of coastal zone provide numerous job opportunities and 

some peoples come to coastal area for recreation. In the other hand, many pressures 

could exert on the coastal zone. Some of these are part of natural operation and the 

effects of human-induced by activities. However, there are limits to extent to which 

the coastal ecosystem can withstand external assault to its integrity. Pressures 

emanating from human activities are particularly threatening. 

A major driving force of mangrove forests loss in Southeast Asia and in 

Vietnam is the rapid expansion of aquaculture development. In recent years, mangrove 

forests have become threatened by development as in Thai Binh, so mangroves have 

been lost due to coastal development (Alongi, 2002). Therefore, mapping their 

distribution and areal extent in Vietnam and elsewhere is important for their 

conservation and management. 

Appropriate and cost effective methods are required to reduce the laborious 

method of manually calculating for the amount of biomass. Remote Sensing (RS) is 

noted for giving a good classification of mangroves. Therefore, using Remote sensing 

(RS) and Geographic Information System (GIS) will be an appropriate choice (Sellers 

et al., 1995). Christensen (1993) was shown that biomass can be evaluate by Deriving 

light interception from spectral reflectance ratio (Christensen & Goudriaan, 1993). The 

biomass in a large area can be compute by using remotely sensed satellite data to save 

time and money (Tripathi, Soni, Maurya, & Soni, 2010). This research is based on the 

integration of RS and GIS in estimating the spatial extent of mangrove and the rate of 

change of mangrove in the costal line of Thai Binh province. It also estimate how 

much above ground biomass in mangroves in the study area. 

1.2 Prior study 

Several research work have been carried out in this field of research. Dat (2011) 

Monitoring mangrove forest using multi-temporal satellite data in the Northern Coast 

of Vietnam (Dat & Yoshino, 2011), Pham Tien Dat (2012) were to analyse the current 

status of mangroves using different ALOS sensors in Hai Phong, Vietnam in 2010 and 

compare the accuracy of the post satellite image processing of ALOS imagery in 
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mapping mangroves (Pham & Yoshino, 2012). The research about  implementation of 

mangrove management investigated by the authorities, community or local people has 

affected mangrove change in Vietnam (Pham & Yoshino, 2016). 

Beland (2006) describes the use of a proposed change detection methodology in 

the assessment of mangrove forest alterations caused by aquaculture development, as 

well as the effectiveness of the measures taken to mitigate deforestation in the district 

of Giao Thuy, Thai Binh Vietnam, between 1986, 1992 and 2001 (Beland, Goita, 

Bonn, & Pham, 2006). Mazda (1997) give the demonstrate the usefulness of mangrove 

reforestation for coastal protection in Thai Binh province (Mazda, Magi, Kogo, & 

Hong, 1997). Nguyen Hai Hoa (2016) was using Landsat imagery and vegetation 

indices differencing to detect mangrove change (Hoa). 

1.3 Role of remote sensing and GIS in mangrove monitoring 

Earth observing by using satellite remote sensing has made it possible to collect 

data globally in a relatively short time and for these observations to be continued in the 

future. Remote sensing system can record the biological and physical data; therefore 

we can use that data for forest inventory and environment monitoring. It could be 

support by Global Position System (GPS) in collecting ground data and truth data in 

the earth surface (Parkinson, 2003). 

A first step towards dealing with important environmental issues is to produce 

relevant and up-to-date spatial information that may provide a better understanding of 

the problems and form the basis for the identification of suitable strategies for 

sustainable development. In this point, Remote Sensing and GIS are potentially can 

process the mapping in order to monitor the mangroves (Green, Clark, Mumby, 

Edwards, & Ellis, 1998). 

Remote sensing is an important substitute for traditional field monitoring for 

managing large-scale mangroves (Blasco et al., 1998). Aerial photographs and high-

resolution satellite images are the main sources of remote sensing data for mangrove 

mapping. Satellite data with medium or low resolution and laser scanning data are 

other remote sensing data sources that can be used to assess mangrove ecosystems. In 
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the scientific literature, there are a considerable number of studies related to mangrove 

forests, remote sensing data and various image-processing algorithms. 

Most of the remote sensing studies use high-resolution spatial images, mainly 

with pixel sizes of 5 to 100 m. Image processing and imaging algorithms have a 

significant impact on the accuracy of mangrove forest maps. Therefore, it is imperative 

to identify appropriate sources of data and precise methods for processing mangrove 

forests. When applying pixel based classification algorithms, there are some 

limitations. Misalignment of mangrove forests, non-mangrove vegetation, urban areas 

and even mudflats affect classification accuracy (Gao, 1998).  

According Green (1998) Remote-sensing techniques have demonstrated a high 

potential to detect, identify, map, and monitor mangrove conditions and changes. Also, 

climate change-related remote-sensing studies in coastal zones have increased 

drastically in recent years (Green et al., 1998). Remote sensing techniques offer 

timely, up-to-date, and relatively accurate information for sustainable and effective 

management of wetland vegetation. They also applications in discriminating and 

mapping wetland vegetation, and estimating some of the biochemical and biophysical 

parameters of wetland vegetation (Adam, Mutanga, & Rugege, 2010). 

1.4 Problem Statement 

Meanwhile, various ongoing activities will greatly affect to coastal area and 

mangrove and then long-term cumulative impacts will become more evident. Coastal 

areas are inter-land and seashore interchanges that are unique geologic, ecological, and 

biological sites of vital importance for a wide range of terrestrial and marine life forms 

including human (Beatley, Brower, & Schwab, 2002). Coastal ecosystems are very 

fragile due to the variability of tectonic and terrain processes and variability. 

Vietnam's coastal regions are constantly experiencing changes by the impact of 

nature as well as human activities. Mangroves is a sensitive ecosystem, which 

vulnerable by environmental change include sea level rise and hydrological changes in 

coastal areas (Mitra, 2013).Nevertheless, mangroves are under severe threat. High 

population growth, and migration into coastal areas, hasled to an increased demand for 
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its services. The situation is further exacerbated by weak governance, poor 

planningand uncoordinated economic development in the coastal zone. Globally more 

than 3.6 million hectares of Mangroveshas been lost since 1980. In Vietnam, it is 

estimated that the number of mangrove forest was about 400,000 hectares in early 20th 

century. However, this number declined dramatically over 50 years (T. Q. Vo, 

Kuenzer, & Oppelt, 2015).  

Since Remote Sensing (RS) technology provides data from which updated land 

cover information cheaply and also it can be extracted efficiently. Thus, land use 

change detection has become a major application of remote sensing data and can apply 

to identify the changing in mangrove in Vietnam (Muchoney & Haack, 1994).  

Maintaining mangrove ecosystem services and a healthy environment is one of 

the priority goals of the Vietnam government. Although many studies about mangrove 

forest have been done in Thai Binh province to understand the valuable of this 

ecosystems, but some knowledge gaps still exist. In particular, baseline mangrove data 

need to be updated, in addition to providing an indication of the species that are 

vulnerable, death, or changes to drainage due to urban and rural developments. 

Therefore, it is necessary to monitor mangrove forest, and mapping of 

mangroves is important in order to support coastal zone management and planning 

programs. 

1.5 Research Objectives 

The goals of this research is mapping out mangrove forest from 1998 to 2018. It 

further aims at determining the amount of above-ground biomass in mangrove using 

allometric equations and Remote Sensing. 

The primary objective can be subdivided into following tasks: 

 Mapping mangrove forest and  using RS and GIS and assess of 

mangrove forest change using Remote Sensing 

 Estimate amount of aboveground biomass by different vegetation index 

within study area. 

 Assessing the accuracy of each AGB estimation model. 
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 Estimate the changing of aboveground biomass from 1998 to 2018 

within study area. 

1.6 Organization of the Thesis 

The content of the research is structured under the following chapters: 

Chapter I: Chapter 1 introduces the research work. It highlights on prior 

research work based on mangrove above ground biomass. The objectives of the 

research is highlighted within this chapter. This chapter also show the problem 

statement and research question. 

Chapter II: Chapter 2 gives a theoretical and conceptual of mangrove. Literature 

review on mangroves and further talks about climate change, effect of climate change 

to mangrove. This chapter further researches on the various RS methods that have 

been employed in similar study. 

Chapter III: Chapter 3 gives the method about establish survey pots, collecting 

data, analysis data, estimate above ground biomass and change detection. 

Chapter IV: Chapter 4 shows the results obtained from the research. Analysis 

and discussions are carried out on the result. 

The conclusions and recommendations drawn from the research are presented 

in chapter five. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Mangroves  

Mangrove forest have been described by many authors over time and the 

literature (for example (M. Spalding, Kainuma, & Collins, 2010), (FAO, 2007)). 

Mangrove forests literally live in two worlds at once. Mangroves are comprised of 

salt-tolerant tree or shrub species growing in the intertidal areas and estuary mouths 

between land and sea. They thrive in intertidal region (includes: sheltered coastlines, 

shallow-water lagoons, estuaries, rivers or deltas) (MAP, 2013). Mangroves are found 

in the tropical and subtropical regions of the world between approximately 30°N and 

30°S latitude (FAO, 2007). The total species of mangroves forest are 54-75 species, 

which are found only in the intertidal zone of coasts. There species are highly adapted 

to intertidal environment, capable of expelling salt, allowing mangroves to thrive in 

saline waters and soils. Mangroves are found worldwide, but the greatest species 

diversity is in Southeast Asia (MAP, 2013). 

The total area of mangroves in the year 2000 was 137,760 km
2
 in 118 countries 

and territories in the tropical and subtropical regions of the world. The largest extent of 

mangroves is found in Asia (42%) followed by Africa (20%), North and Central 

America (15%), Oceania (12%) and South America (11%). Approximately 75%of 

mangroves are concentrated in just 15 countries (Giri et al., 2011) 

In recent years, the area and the quality of mangrove forest was decreased in 

Thai Binh province, especially in in the period 1995 – 2000 because the changing land 

use from mangrove forest to aquaculture farm. The land and forest area in coastal line 

of Thai Binh province are 9,167 ha therein forest area is 3,709 ha and non-forest area 

is 5,908 ha. In the low tide area, the percent of sand in soil from 83.64% to 86.57% 

some area can reached 98.32%. In the high tired area, the rate of sand in soil from 

39.19% to 43.69% (Đỗ Quý & Bùi Thế, 2018). 

2.2 Physical factors affecting the growth of Mangroves 

There are some important biological and abiotic factor influence to develop of 

mangroves. That factor formed specific characteristic of mangroves forest. They include: 



8 

 

2.2.1 Climatic factor 

Mangrove ecosystems are threatened by climate change. The state of 

knowledge of mangrove vulnerability and responses to predicted climate change and 

consider adaptation options. All the climate change outcomes, relative sea-level rise 

may be the greatest threat to mangroves. Most mangrove sediment surface elevations 

are not keeping pace with sea-level rise, although longer-term studies from a larger 

number of regions are needed. Rising sea-level will have the greatest impact on 

mangroves experiencing net lowering in sediment elevation, where there is limited 

area for landward migration (Gilman, Ellison, Duke, & Field, 2008). 

2.2.2 Temperature 

The mean annual temperature in the South coastal is about 27
0
C and decreases 

northwards to about 21
0
C in the North coastal. Cold air was brought by the northeast 

monsoon to the north, there by affecting the growth and composition of mangroves in 

this region (Lugo & Patterson-Zucca, 1977).Mangrove species are largest size and the 

most abundant in the equatorial and subtropical areas, where annual temperatures are 

high and narrow temperature range. The appropriate temperature and about 25
0
C-30

0
C 

as in the southern provinces of Vietnam. The number of mangrove species and 

mangrove forest tree in the north is generally lower or smaller than in the south of 

Vietnam, partly because of the low temperature in winter and the high temperatures in 

summer. High temperatures or sudden fluctuations in temperature, can also have an 

adverse effect on mangrove. 

2.2.3 Precipitation  

The distribution and growth of tropical forest are mostly in equatorial areas 

where the rainfall is high (about 1800-2500mm/year). Precipitation is the main factor 

for the distribution of mangroves forest in different tired areas (Eslami-Andargoli, 

Dale, Sipe, & Chaseling, 2009). Mangroves require a certain amount of fresh water for 

optimum growth, even though they are salt tolerant species. Rain regulates salt 

concentration in soil and plants and provides an extra source of fresh water, in addition 

to river water, for mangroves and this favours their physiological processes. In 
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Vietnam, there are about 100 rainy days per year with average rainfall of 1.500 to 

2.000 mm and air humidity of less than 80%.  

 Southwest monsoons from the ocean bring heavy rain to Vietnam during the 

summer months. Consequently, the most dense mangrove forest are found in this 

region. For instance, mangroves flourish at Ca Mau cape, where rainfall are 2000-2200 

mm annually with 120-150 rainy days per year. On the other hand, mangroves are 

sparse along the small estuaries of Khanh Hoa coast where they receive less than 1000 

mm/years ("AccuWeather," 2018) 

2.2.4 Waves and tidal range 

Even though mangrove can survey and develop with waves and tide activity but 

mangrove propagules and seedlings require a low energy habitat. Therefore, 

mangroves often grow in sheltered shores areas. Surface slope and tidal range will 

determine the area and distribution of mangrove, with large tide range and large tide 

area mangrove will be larger (De Vos, 2004). 

2.2.5 Salinity conditions 

Survival declined with decrease in irradiance, except where very low salinities 

apparently induced sensitivity to high irradiance in vulnerable species. Survival in 

understorey shade was lower in the high than low salinity environment. However, 

these apparent effects of salinity were eliminated by reducing below-ground 

interactions with adult trees (Ball, 2002). For example, Excoecaria agallochaspecies 

was distribute in low salinity condition area (smaller than 5psu), if salinity from 5-15 

will be reduce the rooting growth of seed, when the salinity higher than 15psu the seed 

will not rooted. Salinity also effect to the ability of leaves growing and leave area, high 

salinity will make lower in mangrove height and leave area will be smaller. High 

salinity also decrease the longevity of leave and reduce the ability of leave born, it lead 

to mangrove will dead in long term (Chen & Ye, 2014).  

2.2.6 Soil structure 

Soil condition is also effect to the distribution of dominate mangrove species 

(McKee, 1993). The condition for develop mangrove in the area with substrate, 
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waterlogged, anaerobic as sediments, sand and coarse sand, peat soil or coral reef. 

However, the best condition for mangrove forest are living in silty clay soils (Hong & 

San, 1993). Mangroves soil is formed by alluvial, sediment from rivers and sea with 

rich of nutrients such as magnesium, sodium. The soil physical and chemical 

characteristic depend on the sources of alluvial and sediments, therefore it effect to the 

distribution of mangrove forest (Tam & Wong, 1996).  

2.3 The Application of Remote Sensing in monitoring Mangroves 

In recent year, many researches have shown that remote sensing are important 

tool for mangrove forest research with low cost in a large scale (Giri et al., 2011; Giri 

et al., 2007; Winarso et al., 2017). Remote sensing data often use for change detection 

and monitor mangroves forest. Remote sensing is science that collect information 

about object, area or a phenomenon in the world though analysis the data obtained by 

using device that is not exposed to the object, area or phenomenon under investigation 

as satellite or radar. Remote sensing has been identified as a cost-effective method 

using in a large area and even a geographic areas. They have a great effect in 

monitoring the change of vegetation especially in forest sector research (Lillesand, 

Kiefer, & Chipman, 2014). 

Data on vegetation cover change is important with planners for monitoring 

effect of vegetation change in local level or in the world. That data are valuable for 

resource management and planning for evaluate the changing of vegetation and 

anticipate changes in the future. According to Macleod et al (1998) four important 

aspects of change detection in natural resource monitoring: detecting the change have 

occurred, determining the essence of change, measuring the change and assessing the 

spatial pattern of change (Macleod & Congalton, 1998). 

The applications of RS and GIS provide various guidelines for the sustainability 

of management of tropical coastal ecosystems, including mangroves. It shows that 

remote sensing technology can be integrated in long-term studies combining the past 

and present to make predictions about the future and, if necessary they can show the 

action to prevent degradation of natural resources. Especially, they have been used to 

study mangroves (Ramachandra & Ganapathy, 2007). For the large mangroves forest 
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study, high-resolution satellite image can be show the forest structure characteristic. 

These results can be used to predict future changes in forest structure. (Dahdouh-

Guebas, 2001). 

The essence of using remote sensing data to detect mangrove forest cover 

changing is detection change in radiance value, which can recognize through remotely 

sensed. Nowadays, the technique of using remote sensing images to detect change has 

grown very rapidly following the development of computers. Coppin et al (1996) 

summarized 10 types of techniques used to detect the change they include: Mono-

temporal change delineation, delta or post classification comparisons, multi-

dimensional temporal feature space analysis, and composite analysis. Others are image 

differencing, multi-temporal linear data transformation, change vector analysis, image 

regression, multi-temporal biomass index NDVI, background subtraction, and image 

rationing (Coppin & Bauer, 1996) 

2.3.1 Aerial photography 

Aerial photography (AP) and high-resolution image system as Landsat and 

sentinel are the most common approaches to mangrove remote sensing (Newton et al., 

2009). AP has been widely used in mangrove mapping and assessment. AP can be 

more cost effective over small areas than satellite remote sensing. Anderson (1997) 

found aerial photographs still useful in mapping wetlands. Furthermore, aerial 

photographs are relatively cheap to analyse especially if the areas covered are small, 

such as mangroves and the AP can provide a quick assessment to detect the change 

(M. D. Spalding, Blasco, & Field, 1997) 

In aerial mapping, many limitations that can affect the outcome of the product. 

The major limitation are the limited areal extent and relatively high costs of data for 

large geographic areas. Some limitation related to the sensor, the airborne platform, 

the environment, the interpreter user of the information (Witenstein, 1955).  

2.3.2 Satellite imagery 

The vast majority of mangrove remote sensing studies have employed high-

resolution satellite imagery such as Landsat (MSS, TM, or ETM+), SPOT (HVR, 
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HRVIR, or HRG), ASTER, or IRS (1C or 1D).The techniques used to detect and 

classify mangroves forest are unsupervised classification techniques such as the 

ISODATA approach, supervised classification techniques such as the maximum 

likelihood classification (MLC), mahalanobis distance, or other techniques commonly 

available in commercial image processing software, or a hybrid 

unsupervised/supervised classification scheme (Wilkinson, 2005). The new techniques 

can improve accuracy of mangrove classification, detect individual species, and 

provide reliable estimates of structure such as leaf area, canopy height, and biomass 

(Heumann, 2011) 

2.3.3 GIS, Remote Sensing and Change Detection 

The advantage of creation of thematic map using Remote Sensing and 

Geographical Information Systems (GIS) is effective and efficiency. Both Remote 

Sensing and GIS techniques are important fields of study particularly in the three 

major application that are in area of urban growth studies, area of land use change 

detection analysis, and vegetation studies (NDVI). In this study GIS application, plays 

significant role in change detection of mangrove forest studies that involves the use of 

GIS software of both remote sensing and GIS techniques with powerful tools that has 

the capacities of incorporating different data set particularly in this study. 

Definition of Remote sensing refers to Lillesand dan Kiefer (2014) that is the 

science and art of obtaining information (acquisition) about objects, regions or 

phenomena by analysing the data obtained by without direct contact with the object, 

area or phenomenon which being studied (Lillesand et al., 2014). As an information 

that can analyse, remote sensing can provide a variable source of data updated and 

land cover information. 

2.3.4 Mangrove biomass estimation by Remote Sensing and GIS 

While biomass derived from field data measurements is the most accurate, it is 

not a practical approach for broad-scale assessments. This is where Remote Sensing 

has a key advantage. It can provide data over large areas at a fraction of the cost 

associated with extensive sampling and enables access to inaccessible places. Data 
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from Remote Sensing satellites are available at various scales, from local to global, 

and from a number of different platforms (Kumar, Sinha, Taylor, & Alqurashi, 2015). 

Estimates of forest biomass can provide valuable insights into the carbon 

storage and cycling in forests (Litton, Raich, & Ryan, 2007). Traditional remote 

sensing approaches can provide important information for monitoring change of 

mangroves in area. Recent advances in satellite sensors and techniques can potentially 

improve the accuracy of mangrove classifications, provide reliable estimates of 

structure such as leaf area, canopy height, detect individual species, and biomass 

(Heumann, 2011). Remote sensing-based methods of aboveground biomass (AGB) 

estimation in forest ecosystems have gained increased attention, and substantial 

research has been conducted in the past three decades (Lu et al., 2016). Proisy, (2007) 

using Fourier-based textural ordination to estimate mangrove forest biomass from very 

high-resolution (VHR) IKONOS images. The FOTO method computes texture indices 

of canopy grain by performing a standardized principal component analysis (PCA) on 

the Fourier spectra obtained. In addition, a multiple linear regression based on the 

three main textural indices yielded accurate predictions of mangrove total 

aboveground biomass (Proisy, Couteron, & Fromard, 2007). 

According to Simard, (2006) the application of the elevation data from the 

Shuttle Radar Topography Mission (SRTM), which was calibrated using airborne 

LIDAR data and a high resolution USGS digital elevation model (DEM) for produced 

a landscape scale map of mean tree height in mangrove forests. And then, he using 

field data to derive a relationship between mean forest stand height and biomass in 

order to map the spatial distribution of standing biomass of mangroves by applied 

linear regression (Simard et al., 2006). 

Fatoyinbo, (2008) was determine the mean tree height spatial distribution and 

biomass of mangrove forests using Landsat ETM+ and Shuttle Radar Topography 

Mission (SRTM) data. The SRTM data were calibrated using the Landsat derived 

land‐cover map and height calibration equations. Stand‐specific canopy height‐

biomass allometric equations developed from field measurements and published 

height‐biomass equations were used to calculate aboveground biomass of the 



14 

 

mangrove forests on a landscape scale. (Fatoyinbo, Simard, Washington‐Allen, & 

Shugart, 2008) 

Lu, (2016) was provides a survey of current biomass estimation methods using 

remote sensing data and discusses four critical issues – collection of field-based 

biomass reference data, extraction and selection of suitable variables from remote 

sensing data, identification of proper algorithms to develop biomass estimation 

models, and uncertainty analysis to refine the estimation procedure. Additionally, he 

also discuss the impacts of scales on biomass estimation performance and describe a 

general biomass estimation procedure. Although optical sensor and radar data have 

been primary sources for AGB estimation, data saturation is an important factor 

resulting in estimation uncertainty (Lu et al., 2016)  
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CHAPTER 3: METHOD 

3.1 Study area 

The study area includes the province of Thai Binh, located in northeastern 

coastal Viet Nam.  

3.1.1 Geography location 

Thai Binh is an eastern coastal province in the Red River Delta region; the 

distance with Ha Noi capital is 110 km, with Hai Phong city 70 km and with Nam 

Dinh city 18 km. This province is a coastal province in the Red River Delta region. 

The North part border the provinces of Hai Duong, Hung Yen and Hai Phong city ; 

The South part border Nam Dinh province ; The Western part border Ha Nam 

province and the Eastern part border Gulf of Tonkin. They being a delta province with 

flat terrain and slope of below 1 percent; the terrain of Thai Binh province runs 

downward from the North to the South and varies its height of 1 to 2m to the sea level. 

In administrative border, over natural land area of province, nowadays there is above 

16 thousands ha of Thai Thuy and Tien Hai district‘s coastal land was measured, today 

is being invested exploited to aquaculture and afforest, in there, it inserted aquaculture 

over 4.000 ha and planted 7.000 ha salt-marsh forest. 

 

Figure 1: Study area 
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3.1.2 Climate 

This study focused on the Thai Binh province, Vietnam. The province is lie in 

tropical monsoon area, big heat radiation, create high temperature. Average 

temperature from 23
o
C to 24

o
C this temperature are good for the development of 

mangrove. Thermal amplitude in season is 13
o
C with the temperature of 3 month are 

lower than 20
o
C, in January and February the lowest temperature can be lower than 

5
o
C. This factor will be effect to the development of mangrove (Cúc, 2013). 

Average rainfall in year from 1.500 millimetre to 1.900 mm in a year maximum 

rainfall in August and September, this precipitation is lower than the suitable rainfall 

for mangrove (Yinxia, 1995). In winter the precipitation are lower than 30 mm/month; 

average moisture is 85% - 90%.  

3.1.3 Tidal regime 

The plain is affected by diurnal tide of Tonkin gulf with tidal range of 

approximately 4m. In a day, there is one high tide and one low tide and in one month, 

one spring tide and one neap tide occur. The tidal range tends to decrease slightly from 

north to south as well sea to rivers inland but not so much due to short distance 

between two ends of estuaries. The highest water level recorded at Hon Dau (Hai 

Phong) was 2,66m above MSL (October, 1955) and lowest level was - 1.62m 

(January, 1969). (Cat & Duong, 2006). 

3.1.4 Mangroves forest in Thai Binh Province 

3.1.4.1 Status mangroves in Thai Binh Province 

The area of mangrove forest in Thai Binh province are low compare with total 

area of province but they have important roles in food chain, protecting coastal area, 

economic value for local people. Most of mangrove forest in study site are plantation 

mangrove. The percent of natural mangrove area low and they dispersed distribution. 

Almost mangrove are planted by funding from international organizations, just a small 

area planted by funding of Vietnam government. (Cúc, 2013) 

Thai Binh mangrove forest distributed in the coastal area of 10 communities 
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belong to Thai Thuy and Tien Hai district. The mangrove area in Thai Thuy district is 

2000ha and in Tien Hai district are 1400 ha. (Thụy et al., 2016)  

Thai Binh coastal area have 12 species include: Acrostichum aureum,Acathus 

ebracteatus,Acathus ilicifolus , Sensuvium portulacastrum, Avicennia marina, 

Lumnitzera racemose, Derris trifoliata, Excoecaria agallaocha, Aegiceras 

corniculatum, Bruguiera gymnorrohiz, Kandelia obovate, Rhizophora stylosa, 

Sonneratia caseolaris (Cúc, 2013).  

3.1.4.2 Effect of climate to mangroves in mangroves forest 

There are some climate factor that effect to the development of mangrove forest 

are:  

Firstly, the effect of low temperature because of cold winter: The winter season 

from December to February of next year. The lowest temperature often occur in 

January with temperature lower than 15
0
C and absolute minimum temperature < 5

0
C. 

Mangrove have low increasing rate in this season, some mangrove was dead because 

of low temperature. 

Secondly, the effect of storms and tropical depressions: Mangrove in Thai Binh 

are often effect by the activities of storms and tropical depressions. When the storm 

landed in the mainland, wind speed can reach 40-50 m/s, waves 5-7 m high, especially 

when tides, often cause very serious consequences: broke mangrove tree, change the 

salinity, seedling are submerged,… 

3.2 Data collection 

In this study, we collected two type of data field survey data and satellite image 

data to detect mangrove change and estimate above ground biomass. 

3.2.1 Instruments and software 

The following list of instruments used for the fieldwork and the software used 

for this study (see Table 1) 
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Table 1: Instrument and Software are used 

No. Type Name Utility 

1 Instrument GPS: Garmin 7 channel Collecting ground truth coordinates 

2 Instrument Diameter Tape Diameter Measurement 

3 Instrument Measuring tape 50 meter Length of measurement 

4  Field Datasheet Recording field data 

5 Software Arc GIS 10.2 
Image processing and data analysis, Spatial 

analysis Principal Component Analysis 

6 Software MS Word For documental 

7 Software MS Excel Data analysis 

8 Software Envi 5.3 
Image pre-processing and data analysis, 

classification data. 

9 Software SPSS 23 Data analysis 

3.2.2 Satellite image collection 

In this study, satellite image were obtained from the United States Geological 

survey (USGS) Global Visualization Viewer (GLOVIS) free of charge include Landsat 

image and sentinel image. Image obtained are dated 1998, 2003, 2007, 2013 and 2018 

as described in Table 2. Landsat image was obtained from Landsat constellation of 

satellites that each had a resolution of 30 meters. The area of interest (AOI) for this 

study is located within the dataset of WRS (World Reference System) path 126 and 

Row 46 with correction level 1-T. The sensors on board the Landsat Satellites records 

the surface reflectance of electromagnetic (EM) radiation from the sun in seven 

discreet bands (Table 3 and Table 4).   

Sentinel 2 image was obtained from a constellation of two satellites, both 

orbiting Earth at an altitude of 786 km and they had a resolution of 10 meters. The 

research was based on a decadal analysis of images but due to lack of clear images of 

cloud cover less than 10%. SENTINEL-2 data are acquired on 13 spectral bands in the 

VNIR and SWIR. The satellite image in this study was used in this research describe 

below: 

Table 2: Satellite Images Used in Research 

No Date of 

image 

acquisition Satellite Resolution Path/row 

1 02/11/1998 LT05_L1TP_126046_19980929_20161221_01_T 30x30 126/46 
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1 

2 21/10/2003 LE07_L1TP_126046_20031021_20170123_01_T

1 

30x30 126/46 

3 02/02/2007 LE07_L1TP_126046_20070202_20170105_01_T

1 

30x30 126/46 

4 08/10/2013 LC08_L1TP_126046_20131008_20170429_01_

T1 

30x30 126/46 

5 07/05/2018 S2A_MSIL1C_20180705T031541_N0206_R118

_T48QXH_20180705T061521 

10x10  

Sources: https://earthexplorer.usgs.gov/  

 

3.2.2.1 Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) 

The Landsat Thematic Mapper (TM) sensor was carried onboard Landsat 5 

from July 1982 to May 2012 with a 16-day repeat cycle, referenced to the Worldwide 

Reference System-2. Very few images were acquired from November 2011 to May 

2012. The satellite began decommissioning activities in January 2013. 

Landsat 5 TM image data files consist of seven spectral bands (See Table 3). 

The resolution is 30 meters for bands 1 to 7.  (Thermal infrared band 6 was collected at 

120 meters, but was resampled to 30 meters.) The approximate scene size is 170 km 

north-south by 183 km east-west (106 mi by 114 mi). (Chander, Markham, & Barsi, 

2007) 

Most Landsat 5 TM scenes are processed through the Level 1 Product 

Generation System (LPGS), processed to full Precision Terrain correction. Some TM 

scenes do not have the ground-control or elevation data necessary to perform these 

corrections. 

Landsat 5 Thematic Mapper (TM) scenes held in the USGS archive can be 

searched using EarthExplorer, the USGS Global Visualization Viewer (GloVis), or the 

LandsatLook Viewer. On EarthExplorer, Landsat 4-5 TM scenes can be found under 

the Landsat menu in the ―Landsat Collection 1 Level-1‖ section, in the ―Landsat 4-5 

TM C1 Level-1‖ dataset. 

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensor onboard the 

Landsat 7 satellite has acquired images of the Earth nearly continuously since July 

https://earthexplorer.usgs.gov/
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1999, with a 16-day repeat cycle. All Landsat 7 scenes collected since May 30, 2003 

have data gaps due to the Scan Line Corrector (SLC) failure. Landsat 7 scenes 

acquired after this date are categorized as SLC-off. Landsat 7 ETM+ images consist of 

eight spectral bands with a spatial resolution of 30 meters for bands 1 to 7. The 

panchromatic band 8 has a resolution of 15 meters. All bands can collect one of two 

gain settings (high or low) for increased radiometric sensitivity and dynamic range, 

while Band 6 collects both high and low gain for all scenes. Approximate scene size is 

170 km north-south by 183 km east-west (106 mi by 114 mi). The ETM+ produces 

approximately 3.8 gigabits of data for each scene. An ETM+ scene has an 

Instantaneous Field Of View (IFOV) of 30 meters x 30 meters in bands 1-5 and 7 

while band 6 has an IFOV of 60 meters x 60 meters on the ground and the band 8 an 

IFOV of 15 meters. Please visit the L7 Science Data Users Handbook for a detailed 

description of ETM+ spatial characteristics. (Heckenlaible, Meyerink, Torbert, & 

Lacasse, 2007). 

Table 3: The Band Designations for Landsat 5 Thematic Mapper (TM) and 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

 Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Landsat 7 

Enhanced 

Thematic 

Mapper Plus 

(ETM+) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09-2.35 30 

Band 8 - Panchromatic .52-.90 15 

Source: (Barsi, Lee, Kvaran, Markham, & Pedelty, 2014) 

3.2.2.2 Landsat 8 

The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are 

instruments on board the Landsat 8 satellite, which was launched in February of 2013. 

The satellite collects images of the Earth with a 16-day repeat cycle, referenced to the 

Worldwide Reference System-2. The spectral bands of the OLI sensor, while similar to 

Landsat 7‘s ETM+ sensor, provide enhancement from prior Landsat instruments, with 
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the addition of two new spectral bands: a deep blue visible channel (band 1) 

specifically designed for water resources and coastal zone investigation, and a new 

infrared channel (band 9) for the detection of cirrus clouds. Two thermal bands (TIRS) 

capture data with a minimum of 100 meter resolution, but are registered to and 

delivered with the 30-meter OLI data product. (See Table 4) Landsat 8 file sizes are 

larger than Landsat 7 data, due to additional bands and improved 16-bit data product 

(Mission).  

Table 4: The Band Designations for the Landsat 8 Satellites 

Landsat 8 

Operational 

Land Imager 

(OLI) 

and 

Thermal 

Infrared 

Sensor 

(TIRS) 

  

Bands 
Wavelength 

(micrometer) 

Resolution 

(meters) 

Band 1 - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - Near Infrared (NIR) 0.851 - 0.879 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.566 - 1.651 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

Source: (Barsi et al., 2014) 

 

3.2.2.3 Sentinel 2: 

SENTINEL-2, launched as part of the European Commission's Copernicus 

program on June 23, 2015, was designed specifically to deliver a wealth of data and 

imagery. The satellite is equipped with an opto-electronic multispectral sensor for 

surveying with a sentinel-2 resolution of 10 to 60 m in the visible, near infrared 

(VNIR), and short-wave infrared (SWIR) spectral zones, including 13 spectral 

channels (see Table 5), which ensures the capture of differences in vegetation state, 
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including temporal changes, and also minimizes impact on the quality of atmospheric 

photography. The orbit is an average height of 785 km and the presence of two 

satellites in the mission allow repeated surveys every 5 days at the equator and every 

2-3 days at middle latitudes (Sentinel).  

Table 5: Wavelength Regions and Description of Each Sentinel Band 

Band 

name 

Resolution (m) Central wavelength 

(nm) 

Band width 

(nm) 

Purpose 

B01 60 443 20 Aerosol detection 

B02 10 490 65 Blue 

B03 10 560 35 Green 

B04 10 665 30 Red 

B05 20 705 15 Vegetation classification 

B06 20 740 15 Vegetation classification 

B07 20 783 20 Vegetation classification 

B08 10 842 115 Near infrared 

B08A 20 865 20 Vegetation classification 

B09 60 945 20 Water vapour 

B10 60 1375 30 Cirrus 

B11 20 1610 90 
Snow/ ice / cloud 

discrimination 

B12 20 2190 180 
Snow / ice / cloud 

discrimination 

Source: (sentinel.esa.int, 2018) 

3.2.3 Field survey  

Fieldwork is a very important part of the research. Fieldwork helps to check and 

collect most of the ground information require for mapping. The purpose of sampling 

is to obtain ground truth data and measure the AGB of the study area. Ground truth 

data were collected using a Garmin handheld GPS for training data and accuracy 

assessment, Google earth image can be used for visual inspection. Tree measurement 

data also collected in fieldwork. The data was collected base on random selection 

method with in area of study (Cornelius, Sear, Carver, & Heywood, 1994).  

3.2.3.1 Ground truth data survey. 

Ground truth data is a term used to refer to information collected ―on location‖ 

to verify a satellite image pixel within a certain area. To be more specific it refers to a 

process in which pixels from Landsat or other satellite images are compared to the 

actual or real object on the ground that can be used to verify the pixel of an image. In 
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the case of classified images it will help to determine the accuracy of the image 

performed by remote sensing software. 

Transect lines were made along the study area. GPS: Garmin 7 channel was 

used for record position of habitat type position in transect. Due to the marshy 

grounds, accessibility to some part of the mangrove forest was not possible hence a 

uniformed distance for choosing sites along the transect line was not achieved. 

3.2.3.2 Sample Size and Sampling Techniques 

Sampling plots can be of any size and shape. It can be either square, circle or 

rectangle. However, circular plots are commonly used in forest inventory (Wenger, 

1984).Circular plots are easier to establish than other plots because only one point, the 

centre of the plot is defined and the radius of the plot is measured from the centre and 

the parameter is determined. In this study, circular plot of 1000m
2
 with radius 17.8m 

from the centre of the plot was established (Figure 2).  

 

Figure 2: Circular plot of 1000 m² 

3.2.3.3 Field data collection 

Height and DBH or Diameter at 0.3m height (D0.3) measurements have been the 

key parameters for estimating aboveground biomass and carbon (Brown, 1997). 

Identification of all species within the sampling was made. In addition, diameter at 

breast height (DBH) and total height (H) of all individual species with ≥ 5 cm DBH 

were measured. Tree diameter was measured at 1.3 m aboveground or 30 cm above the 

tallest buttress/prop roots if taller than 1.3 m. In case a tree forks below 1.3 m from the 

ground, all stems with ≥ 5 cm DBH were measured separately (Tobias et al., 2017). 

For Kandelia cande species Diameter at 0.1 was measured in every tree (Khan, Suwa, 

& Hagihara, 2005) The procedure of data collection is crucial in the field. 
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Consequently, measurement of DBH, D0.3 height and species identification of all trees 

crown cover percentage and sample centre coordinates were recorded in every sample 

plots. The coordinates of the centre of the plots were recorded using the GPS.  

Field data were collected in March 2018 in the coastal line of Thai Binh 

province. The location of the sample plots was restricted to easily accessible areas 

based on simple random sampling. Tree parameters such as diameter at breast height 

(DBH) and height were recorded individually. All trees with DBH or D0.3 ≥ 1 cm in 

the sample plot were measured using diameter tape at 30 cm above the highest prop 

roots.  

 

Figure 3: Sampling location 
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3.3 Data analysis  

 

 

Figure 4: Diagram of Research Workflow 

3.3.1 Image pre-processing  

All of Landsat data were used pre-processing to allow inter comparison 

between data, to normalize the data, to correct the atmospheric effects, and to reduce 

noise. The analyses included radiometric calibration, the creation of multispectral data, 

subsetting analysis, gap-filling analysis, and cloud masking. The pre-processing 

analysis were used in this study are explained below: 

3.3.1.1 Radiometric Calibration of Satellite 

Atmospheric correction are required to remove the scattering absorption effects 

from the atmosphere to obtain the surface reflectance characterizing and then create 

image data for classification and monitoring earth surface. (Song, Woodcock, Seto, 

Lenney, & Macomber, 2001). 

The brightness value measured for any object will be influenced by the factor 

asscene illumination, atmospheric conditions, instrument response characteristics, and 

viewing geometry. However, we can repair that factor by some tool or application 
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though the below two step: 

Fist, Landsat Calibration was used to convert Landsat TM, and ETM+ digital 

numbers to spectral radiance or exoatmospheric reflectance (reflectance above the 

atmosphere) using published post launch gains and offsets. 

          (
           

               
)                   

The spectral radiance (Lλ) is calculated using the following equation: 

Where: 

 QCAL is the calibrated and quantized scaled radiance in units of digital 

Numbers 

 LMINλ is the spectral radiance that is scaled to QCALMIN in 

watts/(meter squared*ster*µm) 

 LMAXλ is the spectral radiance that is scaled to QCALMAXin 

watts/(meter squared*ster*µm) 

 QCALMIN is the minimum quantized calibrated pixel value in Digital 

Numbers 

 QCALMAX is the maximum quantized calibrated pixel value in Digital 

Numbers 

The second step involved calculating top of atmosphere (TOA) reflectance for 

each band. This calibration were used for illumination variations (sun angle and Earth-

sun distance). Calibration is applied base on pixel by pixel for each sense (Chavez Jr, 

1989). The TOA reflectance of the Earth is computed according to the equation: 

 

  

       

           

 

 

Where: 

ρλ= Planetary TOA reflectance [unitless] 

π= Mathematical constant equal to ~3.14159 [unitless]  

Lλ= Spectral radiance at the sensor's aperture [W/(m2 sr μm)]  

d= Earth–Sun distance [astronomical units]  
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ESUNλ= Mean exoatmospheric solar irradiance [W/(m2 μm)]  

θs= Solar zenith angle [degrees] 

3.3.2 Filling the Gaps of Landsat 7 ETM+ image. 

On May 31, 2003, the Scan Line Corrector (SLC), which compensates for the 

forward motion of Landsat 7, failed. Subsequent efforts to recover the SLC were not 

successful, and the failure appears to be permanent. Without an operating SLC, the 

Enhanced Thematic Mapper Plus (ETM+) line of sight now traces a zig-zag pattern 

along the satellite ground track. As a result, imaged area is duplicated, with width that 

increases toward the scene edge. 

The Landsat 7 ETM+ is still capable of acquiring useful image data with the 

SLC turned off, particularly within the central part of any given scene. The Landsat 7 

ETM+ therefore continues to acquire image data in the "SLC-off" mode. All Landsat 7 

SLC-off data are of the same high radiometric and geometric quality as data collected 

prior to the SLC failure. An estimated 22 percent of any given scene is lost because of 

the SLC failure. The maximum width of the data gaps along the edge of the image 

would be equivalent to one full scan line, or approximately 390 to 450 meters. 

Image obtained from Landsat 7 ETM+ image dated October 21
th

 2003 had scan 

line errors on the image after acquisition due to sensor malfunction. To fix this 

problem ―Gapes Filling tool in ENVI 5.3‖ software was used. This tool works with the 

standard Level 1 terrain corrected (L1T) GeoTIFF format images obtained from 

Landsat. The gap fill procedure works by using two sources of images as input data 

which is one working image and two reference images (usgs.gov, c2018).  

Multiple SLC-off images are required to utilize this method. Individual bands 

of each image need to be gap-filled before creating a 3-band image. For instance, in 

order to gap-fill Image 1 with Image 2, a mosaic will need to be made of Band 1 from 

Image 1 and Image 2 together. The bands can then be stacked to create the RGB 

image.  Gap filling process by using ENVI 5.3 will describe in below: 

- Open ENVI 5.3 

- Open the .tif band files to be used. 

- Select Map -> Mosaicking -> Georeferenced 
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- Select Import -> Import Files and Edit Properties. Click Open to choose the 

files you want to gap-fill; they will populate the left-hand frame. 

- Highlight one file and click OK, setting the Background See Through-Data 

Value to Ignore to 0. Colour balancing can be done to adjust any brightness 

differences between the images, if needed. 

- Repeat for all files 

- Select File -> Apply, and assign an output file name and select other 

applicable options. 

- Click OK. 

 

Figure 5: Landsat 7 Image (Band 4, 3, 2) Received On October 21
th

 2003 before 

and After Gap Filling 

3.3.3 Cloud Masking 

Cloud and cloud shadow are common feature of visible and near infrared 

satellite image in the world especially in tropical and subtropical (Martinuzzi, Gould, 

& González, 2007). Masking of cloud and cloud shadow is an important step for 

mapping of land surface attributes. Cloud and cloud shadow is particularly a problem 

for land cover change analysis, because cloud may be mapped as false changes, and 

the changing can be more than actual changes this lead to reduce accuracy of land 
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cover map (Huang et al., 2010).The limitation was that researcher unable to replace the 

masked areas with pixels from corresponding cloud-free image.  Thus, mosaicking 

tool in ENVI 5.3 was used for automated placement of georeferenced images within a 

georeferenced output mosaic. The purpose of this analysis was to confine and remove 

the remaining cloud and cloud shadow cover area. The remaining cloud cover was 

identified using the image interpretation by true colour image using band combination 

red, blue and green (RGB). Cloud area was identified by white colour, and then 

compare them with a clear image to verify write the features either to be cloud or non-

cloud area.  

3.4 Classification 

Classification can be considered as the process of pattern recognition or 

identification of the pattern associated with each pixel position in an image in terms of 

the characteristics of the objects or materials those are present at the corresponding 

point on the earth‘s surface (Syed et al., 2001). The multispectral subset data of the 

multi-temporal Landsat series (TM, ETM+ SLC-off, SLC-off gap-filled, and 

OLI_TIRS) were then analysed for classification analysis.  

The supervised classification techniques were applied in this study. 

Classification was carried out on the Landsat imagery to determine the land use land 

cover. The composite bands used represented false colour combination. 

3.4.1 Supervised classification 

Supervised classification methods require input from an analyst. The input from 

analyst is known as training set. Training sample is the most important factor in the 

supervised satellite image classification methods. Accuracy of the methods highly 

depends on the samples taken for training. Training samples are two types, one used 

for classification and another for supervising classification accuracy. Supervised 

classification includes additional functionality such as analysing input data, creating 

training samples and signature files, and determining the quality of the training 

samples and signature files (Abburu & Golla, 2015). 

3.4.1.1 Maximum likelihood supervised classifier 

Maximum Likelihood is a supervised classifier popularly used in remote 
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sensing image classification. It considers the variance and covariance of class 

signatures to assign each object or pixel to a class (Sisodia, Tiwari, & Kumar, 2014). 

Classification in this study by maximum likelihood supervised classifier was showed 

in below: 

- Step 1: Display the three-band overlay composite image. The visible channel, 

the channel are associated with red, green and blue, respectively so that the clouds 

look white, vegetation looks green, water looks dark and lands without vegetation 

looks different shades of brown. After that, we take a careful look at the available 

features and determine the set of classes into which the image is to be segmented. 

- Step 2: Using ‗box-cursor‘ to choose representative training samples for each 

of the desired classes from the colour composite image. These pixels are said to form 

training data. Based on the data picked from the study area, a set of training areas were 

depicted as polygon shape files storing the identity for each land cover type in a 

column in the attribute table (see Table 6). 

- Step 3: Using the trained classifier to classify every pixel in the image into 

one of the desired classes. 

-Step 4: Color-encode and show the classified image. Estimate the number of 

pixels and area for each class and show the statistics for each class. 

Based on the condition of study area and the purpose of the research we classify 

the map into five different land cover type include sparse mangrove, dense Mangrove, 

agriculture area, water body, other land use (see Table 6). 

Table 6: LULC ID and names 

ID LAND COVER CATEGORIES 

1 Sparse mangrove 

2 Dense Mangrove 

3 Agriculture area 

4 Water body 

5 Other 
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Some LULC photo from fieldwork:  

 

Figure 6: Open mangrove 

 

Figure 7: Dense mangrove forest 
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Figure 8: Water body land use 

3.5 Accuracy assessment 

Accuracy assessment forms the most integral part of the classification process. 

No classification is complete until its accuracy has been assessed. Classification 

remains a pretty picture without an accuracy assessment. Accuracy simply denotes the 

level of agreement between labels assigned by the classifier and the class allocation on 

the ground collected by the user as the test data. The sample was selected without any 

biasness. The known reference data was another set of data different from that which 

is used for the classifier used in the performance of accuracy assessment (Regression). 

In this study, 100 ground truth points data (training data) were collected by 

create random point tool in ArcGIS 10.2. Accuracy assessment was applied by The 

Error Matrix method and also to determine the kappa of the classification. 

3.5.1 The Error Matrix 

An error matrix is a square array of numbers set out in rows and columns which 

express the number of sample units (i.e., pixels, clusters of pixels, and polygons) 

assigned to a particular category relative to the actual category as verified on the 

ground. The columns usually represent the reference data while the rows indicate the 

classification generated from the remotely sensed data (Congalton & Green, 2008).An 
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error matrix is a very effective way to represent accuracy in that the accuracies of each 

category are plainly described along with both the errors of inclusion (commission 

errors) and errors of exclusion (omission errors) present in the classification 

(Congalton, 1991).User‘s accuracy, producer‘s accuracy and overall accuracy can be 

judged with the help of error matrix method. The brief description of the accuracy 

indexes are given below. 

 Overall accuracy 

The proportion of the reference pixels which are classified correctly is known 

as the overall accuracy. It is computed by dividing the total number of correctly 

classified pixels by the total number reference pixels. It is a very coarse measurement 

and does not provide the information about the classes that are classified with good 

accuracy. 

 

Overall accuracy =   ⁄      

 

Where:  D = total number of correct point  

  N = total number of cell in the error matrix. 

 User‘s accuracy  

User's accuracy shows false positives, where pixels are incorrectly classified as 

a known class when they should have been classified as something else. An example 

would be where the classified image identifies a pixel as impervious, but the reference 

identifies it as forest. The impervious class has extra pixels that it should not have 

according to the reference data. User's accuracy is also referred to as errors of 

commission, or type 1 error. The data to compute this error rate is read from the rows 

of the table. The Total row shows the number of points that should have been 

identified as a given class, according to the reference data (Congalton & Green, 2008). 

 Producer's accuracy: 

Producer's accuracy is a false negative, where pixels of a known class are 

classified as something other than that class. An example would be where the 

classified image identifies a pixel as forest, but it should be actually be impervious. In 
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this case, the impervious class is missing pixels according to the reference data. 

Producer's accuracy is also referred to as errors of omission, or type 2 error. The data 

to compute this error rate is read in the columns of the table. The Total column shows 

the number of points that were identified as a given class, according to the classified 

map 

3.5.2 Kappa Statistics 

The Kappa coefficient of agreement is a discrete multivariate analysis technique 

used to evaluate the accuracy of change detection and classification maps created with 

remotely sensed imagery. It is calculated from the error matrix and measures the 

performance of the classification compared with the reference data. The result is the 

Kappa(hat) statistic which is another method of agreement or accuracy. It includes all 

elements of the confusion matrix. The Kappa(hat) Statistic is a measure of the difference 

between the actual agreement between the reference data and an automated classifier 

and the chance agreement between the reference data and a random classifier. It is 

calculated as 

 

Kappa = (Observed agreement - Chance agreement)/(1 - Chance agreement) 

The statistic serves as an indicator of the extent to which the percentage correct 

values of an error matrix are due to ―True‖ agreement versus ―chance‖ agreement. As 

true agreement approaches 1 and chance agreement approaches 0, k approaches 1.The 

main advantage of using the Kappa(hat) is the ability to use the value as the basis for 

determining the statistical significance of any given matrix or the differences among 

matrices 

3.6 Estimating Above Ground Biomass 

Above-ground biomass can be measured or estimated both destructively and 

non-destructively. In the destructive method, sometimes also known as the harvest 

method, the trees are actually cut down and weighed. Sometimes a selected sample of 

trees are harvested and estimations for the whole population are based on these, 

especially where there is uniformity in tree size, for example a plantation. The 

destructive method of biomass estimation is limited to a small area due to the 
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destructive nature, time, expense and labour involved. The non-destructive methods 

include the estimation based on allometric equations or through remote imagery. 

Allometric equations have been developed through the use of tree dimensions, such as 

diameter at breast height (DBH) and tree height, however these are not very useful in 

heterogeneous forests. Allometric equations are most useful in uniform forests or 

plantations with similar aged stands (Kumar & Mutanga, 2017). 

In recent years, remote sensing was become a great tool support for field survey 

by avoiding destructive sampling and reducing time and cost for field sampling. Some 

studies have found strong relationship between spectral reflectance values and biomass 

within remotely sensed data. After that the truth point ((Anaya, Chuvieco, & Palacios-

Orueta, 2009),(Winarso et al., 2017),(Muhd-Ekhzarizal, Mohd-Hasmadi, Hamdan, 

Mohamad-Roslan, & Noor-Shaila, 2018)).  

3.6.1 Allometric Equation 

(Anaya et al., 2009)The total AGB was estimated by species-specific allometric 

equations(Komiyama, Poungparn, & Kato, 2005). Using the Global Wood Density 

Database density values of oven-dry wood for all species in the mangrove forest in 

Table 7 (Muhd-Ekhzarizal et al., 2018). All tree species were identified so that the 

species-specific wood density can be applied for accurate AGB estimation. 

The estimation of AGB was based on D and wood density which were 

measured at the field. The equation for AGB can be expressed as follows: 

 

AGB = 0.251ρ × D
2.46

 

 

Where:  AGB = above ground biomass (kg) 

  p = wood density (g/cm
3
) 

  D = Diameter at 0.3m with Rhizophoraceae species and D =  

Diameter at breath Height for other species 

Source: (Komiyama et al., 2005) 

The AGB of Kandelia candel species are not include in list of species create by 

Komiyama (2005). Base on Khan (2005) AGB of K. candel can estimate by bellow 



36 

 

fomular: 

AGB = 0.04117(    
 H) 

Where:  AGB = aboveground biomass 

  D0.1 = Diameter at 0.1 m of height  

  H = the total height tree. 

Source: (Khan et al., 2005) 

 

Table 7: Wood Density for Each Species in Mangrove Forest According To the 

Global Wood Density Database 

Species Vietnamese name  Wood density (g cm
-3

) 

Sonneratia caseolaris Bần 0.390 

Rhizophora stylos Đâng 0.840 

Bruguiera gymnorhiza Vẹt Dù 0.760 

Aegiceras corniculatum Sú 0.510 

Kandelia candel Trang 0.460 

Sources: (Zanne et al., 2009) 

3.6.2 Vegetation indices and estimate above-ground biomass 

A variety of vegetation indices (VIs) have been developed for retrieving 

vegetation density from optical remote sensing images. The vegetation indices are 

used to predict the biomass of trees and the most common one is with the normalised 

difference vegetation index (NDVI) (Li et al., 2007).However using NDVI alone can 

significantly underestimate the biomass of some woody mangroves because NDVI 

represents canopy properties rather than trunk properties that are crucial for accurate 

biomass retrieval (Foody et al., 2001).Consequently, Araujo, (2000)also revealed the 

same and found that soil-adjusted vegetation index (SAVI) was more promising in 

characterising biophysical profile of forest (Araujo, dos Santos, & Shimabukuro, 

2000). Wicaksono, 2016 also found that the SAVI variable is useful or predicting 

biomass than NDVI.  The reason is that MSAVI reduces the background soil 

reflectance which is added to vegetation reflectance. (Wicaksono, Danoedoro, 
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Hartono, & Nehren, 2016).  

Plot sampling process was implemented to extract Vegetation Index values of 

the satellite images at the corresponding locations on the ground. The 2018 sentinel 2 

image was utilised for this process. A ground plot with the size of 1000 m
2
 can cover 

exactly 10 pixels of 10-m resolution. 

3.6.2.1 Normalized Difference Vegetation Index 

The sunlight spectrum makes from many different wavelengths. When sunlight 

strikes objects, certain wavelengths of this spectrum are absorbed and other 

wavelengths are reflected. NDVI (Normalized Difference Vegetation Index) were used 

to determine the density of green on a patch of land by observe the distinct colours 

(wavelengths) of visible and near-infrared sunlight reflected by the plants. NDVI value 

were calculated on -composite image. band 3 (Red) and 4 (Near Infrared) are used to 

calculate NDVI in Landsat 7, and band 4 (Red) come with band 5 (Near Infrared) are 

used for Landsat 8. NDVI is formulated as below 

 

NDVI = ((NIR – RED)/(NIR + RED)) 

 

Calculations of NDVI for a given pixel always result in a number that ranges 

from minus one (-1) to plus one (+1); however, no green leaves gives a value close to 

zero. A zero means no vegetation and close to +1 (0.8 - 0.9) indicates the highest 

possible density of green leaves (Zaitunah, Ahmad, & Safitri, 2018).  

In this study, NDVI was used for classification and estimate biomass of 

mangrove forest in Thai Binh province.  

3.6.2.2 Soil-Adjusted Vegetation Index 

In areas where vegetative cover is low (i.e., < 40%) and the soil surface is 

exposed, the reflectance of light in the red and near-infrared spectra can influence 

vegetation index values. This is especially problematic when comparisons are being 

made across different soil types that may reflect different amounts of light in the red 

and near infrared wavelengths (i.e., soils with different brightness values). The soil-

adjusted vegetation index was developed as a modification of the Normalized 
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Difference Vegetation Index to correct for the influence of soil brightness when 

vegetative cover is low. The SAVI is structured similar to the NDVI but with the 

addition of a ―soil brightness correction factor (L)‖ 

 

SAVI = 
          

            
 (L+1) (Huete, 1988) 

 

Where:       is the reflectance value of the near infrared band 

       is reflectance of the red band 

  L is the soil brightness correction factor.  

The value of L varies by the amount or cover of green vegetation: in very high 

vegetation regions, L=0; and in areas with no green vegetation, L=1. Generally, an 

L=0.5 works well in most situations and is the default value used. In this study, soil 

brightness correction factor (L) was used L = 0.5. 

3.6.2.3 Green Normalized Difference Vegetation Index 

Green Normalized Difference Vegetation Index (GNDVI) is modified version 

of NDVI to be more sensitive to the variation of chlorophyll content in the forest. ―The 

highest correlation values with leaf N content and DM were obtained with the GNDVI 

index in all data acquisition periods and both experimental phases. … GNDVI was 

more sensible than NDVI to identify different concentration rates of chlorophyll, 

which is highly correlated at nitrogen, in two species of plants‖. GNDVI uses visible 

green (instead of visible red) and near infrared. Use of the visible green band extends 

sensitivity of index across this higher Chlorophyll concentration range. Useful index 

for measuring rates of photosynthesis and monitoring plant stress (Gitelson, Kaufman, 

& Merzlyak, 1996) 

 

GNDVI = (NIR – green)/(NIR + green) (Gitelson et al., 1996) 

 

Where:  GNDVI = Green Normalized Difference Vegetation Index 

 NIR: is the reflectance value of the near infrared band  

 Green: is reflectance of the green band 
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3.6.2.4 Global Environmental Monitoring Index 

GEMI (Global Environment Monitoring Index) complies better to the 

requirements expressed above than NDVI, over the entire range of vegetation values, 

and for all atmospheric conditions. It is seen that, when the atmospheric optical 

thickness increases from clear to more turbid conditions, the range of 'transmission' of 

NDVI is larger than that of GEMI. Additional studies, to be reported on elsewhere, 

have shown that the biological information content of this index is at least as good as 

that of the NDVI (Pinty & Verstraete, 1992). 

 

GEMI =             
         

     
 

 

Where: 

 

n = 
 (         )              

           
 

NIR = pixel values from the near infrared band 

Red = pixel values from the red band 

3.7 Regression analysis 

Regression models are some of the main techniques used to predict AGB apart 

from K nearest neighbourhood and neural network (Lu, 2006). A relationship between 

one dependent variable and one or more independent variables can be identified using 

regression analysis. The two commonly used regression models are, simple linear and 

multiple linear regression models (Quinn & Keough, 2002).  

3.7.1 Linear regression  

Researchers widely use linear regression model because the model describes the 

linear relationship between independent (x) and dependent (y) variables. It defines 

variation in y with a change in x and a new y value can be predicted from a new value 

of x (Quinn & Keough, 2002). In linear regression analysis, AGB was used as the 

dependent variable and NDVI, SAVI, GNDVI, GEMI were used as the independent 

variable to determine the change in the AGB. The coefficient of determination (R²) 
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was obtained to check the variability of vegetation indices can be caused or explained 

by its relationship to above ground biomass (Tang & Mayersohn, 2007). 

A total of 37 plots observed in the field were used for model development and 

validation. 

 

Linear regression function: 

Y =    +   * X 

 

Where:      Y is the predicted biomass  

       0 and  1 are model coefficients   

    X   is vegetation indices value 

 

3.7.2 Model validation and accuracy assessment 

A validity check is performed to measure the prediction accuracy. Thus, 

validation process is essential before any model can be used. The predicted AGB 

obtained from the model was correlated with the calculated AGB to observe the 

coefficient of determination (R²) of model validation. Furthermore, the Root Mean 

Square Error (RMSE) was calculated using below formula: 

Root Mean Square Error calculation:  

 

RMSE= √
∑   ̂     

   

 
 

Where:  

RMSE is Root Mean Square Error 

Y is biomass observed or calculated using allometric equation 

 ̂ is biomass predicted or derived from the radar backscatter using the model 

n is the number of validating plots. 
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CHAPTER 4: RESULT AND DISCUSSION  

4.1 Mangrove Classification 

4.1.1 Classification feature  

Table 8 shows five classes in each of the classes obtained were assigned a class 

name and class colour to reflect the true nature of objects as they appeared on the 

ground. Colours assigned reflected the suspected areas of mangrove forests, water 

body, and agriculture area. There colours remain constant for all classified image and 

labelled the same colour to avoid confusion when doing accuracy check (Table 8). 

Table 8: Class Name and Assigned Class Colours 

Value Land cover Color 

1 Open mangrove  

2 Dense Mangrove  

3 Agriculture area  

4 Water body 
 

5 Other 
 

 

Based on the classification above, it can be identified that the elements in the 

area change map have color representation in several classes, namely open mangrove, 

dense mangrove, agriculture area, water body and other. Open mangrove is mangrove 

forest with low density <1000 tree / ha (Herison, Yulianda, Kusmana, Nurjaya, & 

Adrianto, 2014) or the new planting forest area. Dense mangrove is dense of mangrove 

vegetation constraint the coastal area in the various diameter of tree. Unlike the 

mangrove forest, in this study also identified the type of land use for agriculture. 

Agriculture is land covered with temporary crops followed by harvest period, crop 

fields and pastures and other type of cultivation. Water bodies are areas that are 

sources of water such as stream, lakes, rivers, seas and so on. The mapping results in 

this study identified sea and watery areas that are scattered in several areas. And then 

Other land cover which is another area of use, which is the use of areas in various 

purposes such as residence, sediment area, construction and etc.  

In order to mapping land use changing in Thai Binh coastal zone, so the 
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classified needed to do especially for mangrove forest. Most applications related to 

mangrove mapping usually focus on the discrete differentiation between mangrove and 

non-mangrove areas or on the qualitative assessment of species, growth status, or 

condition to derive classes such as ―dense‖ or ―sparse‖ mangrove forests (Q. T. Vo, 

Oppelt, Leinenkugel, & Kuenzer, 2013). In any case, grouping shows the values for 

each land characteristic. This was obtained through the results of map observations 

and literature studies. Furthermore, each value will be used consistently in the analysis 

process to identify changes in land cover. 

4.1.2 Mangrove Classification mapping 

In this study, supervised classification (maximum likelihood method) was 

performed with the help of training site obtained from the field. Five land cover 

classes were identified include dense mangrove, Open mangrove, water body, rice 

field, and other land use the result in Figure 9 Shows the various LULC. The classified 

satellite image of the year 1998 and 2018 shows a significant change in land use/land 

cover in the study area.  

Each of the land use and land cover map was compared to the reference data to 

assess the accuracy of the classification. The reference data were prepared by 

considering sample points (collecting by GPS), the field knowledge and Google earth. 

During the field visits a hand held GPS (Global Positioning System) is used to identify 

the exact position of the place under consideration with latitude and longitude and its 

type by visual observation. The ground truth data so obtained was used to verify the 

classification accuracy. 

We considered five images taken at approximately equidistant time points 

(1998, 2003, 2008, 2013, and 2018) over the study period. By comparing classified 

images from two adjacent time points, the areas mangroves changed was identified. 

The study area covers an area of 55201.86ha. In 1998, about 4508.73ha representing 

8.17% of the total area covered by open mangrove increased to 4563.45ha in the year 

2003 (occupying 8.27% of the study area). In the year 2007 the area of open mangrove 

are 3230.28 ha that is 8.27%. In 2013, this mangrove was increased to 4511.07 ha 

equivalent to 7.88%. However, it was slight decrease in 2018 it just 4148.83 ha or 
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7.51%. 

Figure 9 shows dense mangrove class in the study area between 1998 and 2018, 

Thai Binh province gained 1072.85ha dense mangrove forest. If we assume equal 

yearly increase, this would mean an increase of 53.64ha per year between 1998 and 

2018. The dense mangrove area slight increased from 1366.2 ha in 1998 to 1372.32ha 

in 2003 and sight decreased to 1203.57ha in 2007, in 2013 it increased to 1834.02ha 

and significant increase in 2018 (2439.05ha). Regarding proportions, mangroves have 

been found statistically  increased 0.45%, decreased 12.30%, and increased 52.38% 

and increased 32.99% between 1998 and 2003, 2007, 2013 and from 2013 to 2018 

respectively (Table 10).  

This study indicated that mangrove forest area was increase from 1998 to 2018. 

The open mangrove was decreased 359.9ha but dense mangrove increased 1072.85ha. 

The result from Dat, (2011) showed that mangrove forest in Thai Binh province 

increased 987ha from 1990 to 2007. If we assume equal yearly increase, this would 

mean an increase of 58.06 ha per year. The increasing of mangrove area is higher than 

our study 22.41ha per year (Dat & Yoshino, 2011). Although mangrove area was 

increasing in study area but it was decreasing in the in the Northern coast of Vietnam 

because the decline of mangrove in Quang Ninh and Hai Phong province (Dat & 

Yoshino, 2011).  

There are two main reason for the increasing of mangrove forest area in Thai 

Binh province. (1) A large number of project were implemented in Thai Binh 

province. In 2006, a project were implemented by Asian Forest Cooperation 

Organization about afforest, rehabilitate and sustainably manage mangrove forest 

ecosystems; raise awareness and enhance the knowledge and capacities of local 

communities on the rehabilitation, protection and sustainable development of 

mangrove forests, biodiversity conservation, climate change mitigation and livelihood 

improvement strategies. In the same this year, International Federation of Red Cross 

and Red Crescent Societies (IFRC) and Japanese Red Cross (JRC) was implemented a 

project for added mangrove trees in mangrove forests established in earlier phases and 

expanded its planting of bamboo along river dykes and along coastal and river bank 

stretches. The aim of the planting component was to better protect dykes and 
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communities from hazards such as typhoons, storms and floods (VNRC, 2006). (2) 

The natural development of mangrove forest. 

Natural regeneration of seedlings in mangrove forest is an important part of the 

secondary succession process. The growth of natural types of mangrove seedlings has 

a relationship with the availability of mother trees that have spread seeds to mangrove 

areas. Furthermore, the success of mangrove vegetation growth can be influenced by 

several factors, namely the environmental parameters of the water in the form of pH, 

COD, BOD and TSS that are still on the tolerant threshold for the mangrove 

vegetation produced from planting or natural. In fact, the soil fertility level around 

mangrove habitat in the front zone is low (Wallacea, 2016). This is due to the higher 

tidal frequency and flooding, which results in frequent washing of nutrients contrast 

based on research (Salmo, Lovelock, & Duke, 2013) shows that the trend of increasing 

new soil fertility will be seen in observations in the rehabilitation area in a long time 

span. 

 

Figure 9: Land Use Land Cover Map in 1998, 2003, 2007, 2013, 2018 
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Table 9: Area of LULC for Years 1998, 2003, 2007, 2013, 2018 

 Open mangrove 

 (ha) 

Dense mangrove 

 (ha) 

Water 

 (ha) 

Agriculture area 

 (ha) 

Other 

 (ha) 

1998 4508.73 1366.20 29783.07 12119.30 7400.52 

2003 4563.45 1372.32 31008.60 11910.60 6355.17 

2007 3230.28 1203.57 28746.09 13969.44 8060.85 

2013 4511.07 1834.02 26089.20 11636.91 13208.85 

2018 4148.83 2439.05 18913.04 7859.42 21849.95 

 

Table 10: Percent (%) of Land Cover in Study Area 

Land cover 1998 2003 2007 2013 2018 

Open mangrove 8.17 2.48 53.98 21.96 13.41 

Dense mangrove 8.27 2.49 56.16 21.57 11.51 

Water 5.85 2.18 52.07 25.30 14.60 

Agriculture area 7.88 3.20 45.55 20.32 23.06 

Other 7.51 4.42 34.26 14.24 39.58 

 

 

 

 

Figure 10: Land cover change from 1998 to 2018 

Although the area of water body was increased from 1998 to 2003 but it 

decreased from 2003 to 2018. In 1998, the extent of water was 50.79% that is 
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28073.07ha. In 2003, the extent is 56.16% that is 31008.6 ha. In 2007, it decreased to 

28746.09ha (52.07%). In 2013, the water body area was 26089.2 ha that is 45.55%. In 

2018, water surface was decreased significantly to 18913.04 (34.26%).Changes in 

Water body can be attributed to the twice - daily inundation of water in mangrove 

areas. This results in the overflow of the river causing the marshy ground and lots of 

water on the surface of the ground. As a result, Water body tends to increase or 

decrease depending on the day and time of capture (Yevugah, 2017).  

Agriculture area reduced 208.7 ha from 12119.3ha in 1998 to 11910.6ha in 

2003, however, increased by 2058.8ha from 2003 to 2007, while decreased by 

2332.53ha from 2007 to 2013, following a decline of 3777.49 ha from 2013 to 2018. 

In generally, the agriculture area are not significant changing. Their value around 

12000 ha in 1998, 2003, 2013, and they was increased to 13969ha in 2007 and 

decreased to 11636ha in 2018. The agriculture area was effected by the urbanization of 

Thai Binh province (Van Suu, 2009). 

Other land used like sediment area, construction area, bare land were group into 

a group of land use with the name is other land used. Sediment area which is a part of 

other land use are Located in the area of tidal influence, therefore other land used was 

change two time per day base on the tide activity. In 1998, the area of other land use 

were 7400.52ha that is 13.39%. This area was decreased in 2003 6355.17ha (11.51%). 

In 2007, this area increased 1705.68ha and they are keep increased to 13208.85ha in 

2013. In 2018 other land used significantly increased to 21849.95 that is 39.58% in 

total study area. 

4.1.3 Land use land cover change Accuracy Assessment 

The classified images have been evaluated quantitatively through accuracy 

assessment of all the land cover classes. Producer‘s accuracy is the measure of how 

accurately a class can be classified in an image. It is the percentage of pixels that 

should have been put in a given class but they are not. User‘s accuracy simply implies 

the confidence of the class in a classified image. Producer‘s accuracy is the overall 

accuracy of the classified image. It simply indicates the pixels that were placed in a 

given class when they actually belong to another class. In accuracy table (Table 11, 
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Table 13, Table 12, Table 14, Table 15) the values represent points. The columns 

represent the actual values, and the rows represent the classified values 

4.1.3.1 Accuracy Assessment of the Classified Images in 1998 

From the accuracy table (Table 11), it has been shown that the overall accuracy 

of classification image in year 1998 are 93%. The overall Kappa statistic are 0.88 in 

year 2000 classified image. The lowest producer‘s accuracy is sparse mangrove; the 

highest are dense mangrove and agriculture area 100% accuracy. For user‘s accuracy, 

the lowest accuracy is Agriculture area (85.7%) and the highest accuracy is dense 

mangrove (100%) 

Table 11: Accuracy Assessment of the Classified Images in 1998. 

Actual  

Predicted 

Open 

mangrove 

Dense 

mangrove 

Water 

body 

Agriculture 

area 
Other Total 

User's 

accuracy 

Sparse mangrove 9 0 1 0 0 10 90.00 

Dense mangrove 0 4 0 0 0 4 100.00 

Water body 1 0 54 0 1 56 96.43 

Agriculture area 0 0 1 18 2 21 85.71 

Other 1 0 0 0 8 9 88.89 

total 11 4 56 18 11 100 
 

Producer’s accuracy 81.82 100.00 96.43 100.00 72.73 
  

Overall accuracy = 93% Overall Kappa = 0.88 

 

4.1.3.2 Accuracy Assessment of the Classified Images in 2007 

The accuracy assessment based on Error matrix method had given in Table 12. 

The overall classification accuracy based on error matrix method is 96%, Kappa 

statistics is 0.93. The user‘s accuracy no lower than 91.67%. There are two class in 

producer‘s accuracy are lower than 100% are sparse mangrove (66.67%) and other 

land (86.67%). 
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Table 12: Accuracy Assessment of the Classified Images in 2007 

Actual  

Predicted 

Open 

mangrove 

Dense 

mangrove 

Water 

body 

Agriculture 

area 

Other total User's 

accuracy 

Open mangrove 4 0 0 0 0 4 100.00 

Dense mangrove 0 3 0 0 0 3 100.00 

Water body 2 0 54 0 0 56 96.43 

Agriculture area 0 0 0 22 2 24 91.67 

Other 0 0 0 0 13 13 100.00 

total 6 3 54 22 15 100 
 

Producer’s 

accuracy 
66.67 100.00 100.00 100.00 86.67 

  

Overall accuracy = 96% Overall Kappa = 0.93 

4.1.3.3 Accuracy Assessment of the Classified Images in 2003 

In classified image year 2003, the overall accuracy is 86%, that accuracy is 

lower than year 1998. The Overall Kappa statistic are 0.79  

Table 13: Accuracy Assessment of the Classified Images in 2003 

Actual  

Predicted 

Sparse 

mangrove 

Dense 

mangrove 

Water 

body 

Agriculture 

area 

Other total User's 

accuracy 

Open 

mangrove 

12 0 4 0 0 16 75.00 

Dense 

mangrove 
2 2 0 0 0 4 

50.00 

Water body 3 0 43 1 0 47 91.49 

Agriculture 

area 
0 0 0 22 3 25 

88.00 

Other 1 0 0 0 7 8 87.50 

Total 18 2 47 23 10 100   

Producers 

accuracy 
66.67 100.00 91.49 95.65 70.00 

 

  

Overall accuracy = 86% Overall Kappa = 0.79 

4.1.3.4 Accuracy Assessment of the Classified Images in 2013 

The overall accuracy of classified image year 2013 is 94% and overall Kappa 

statistic is 0.91. The producer‘s accuracy and user‘s accuracy of every classified are 

higher than 80%. 
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Table 14: Accuracy Assessment of the Classified Images in 2013 

Actual  
Predicted 

Sparse 

mangrove 

Dense 

mangrove 

Water 

body 

Agriculture 

area 
Other Total 

User's 

accuracy 

Open mangrove 8 0 0 1 0 9 88.89 

Dense 

mangrove 
0 4 0 0 0 4 100.00 

Water body 2 0 48 0 0 50 96.00 

Agriculture 

area 
0 0 0 21 2 23 91.30 

Other 0 1 0 0 13 14 92.86 

total 10 5 48 22 15 100 
 

Producers 

accuracy 
80.00 80.00 100.00 95.45 86.67 

  

Overall accuracy = 94% Overall Kappa = 0.91 

4.1.3.5 Accuracy Assessment of the Classified Images in 2018 

In classified images year 2018, the overall accuracy is 91% and the overall 

Kappa statistic is 0.87. The lowest user‘s accuracy is dense forest classified (71.43%); 

the highest accuracy is open forest (100%). The producer‘s accuracy of dense forest is 

same value with the user‘s accuracy. The highest producer‘s accuracy is water body 

class (100%) 

Table 15: Accuracy Assessment of the Classified Images in 2018 

Actual  

Predicted 

Open 

mangrove 

Dense 

mangrove 

Water 

body 

Agriculture 

area 

Other Total User's 

accuracy 

Open 

mangrove 
9 0 0 0 0 9 100.00 

Dense 

mangrove 
0 5 0 2 0 7 71.43 

Water body 2 0 39 1 0 42 92.86 

Agriculture 

area 
0 1 0 23 2 26 88.46 

Other 0 1 0 0 15 16 93.75 

Total 11 7 39 26 17 100 
 

Producers 

accuracy 
81.82 71.43 100.00 88.46 88.24 

  

Overall accuracy = 91% Overall Kappa = 0.87 

 

One of the most important final step at classification process is accuracy 

assessment. The aim of accuracy assessment is to quantitatively assess how effectively 

the pixels were sampled into the correct land cover classes (Manandhar, Odeh, & 
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Ancev, 2009). In this research, various statistics related with classification accuracy as 

well as overall Kappa statistic are computed. 

Table 16: Accuracy Assessment overall 

Year Overall Accuracy (%) Overall Kappa 

1998 93 0.88 

2003 86 0.79 

2007 96 0.93 

2013 94 0.91 

2018 91 0.87 

 

Table 17: Rating criteria of Kappa statistics 

No Kappa statistics Strength of agreement 

1 <0.00 Poor 

2 0.00 - 0.20 Slightly 

3 0.21 - 0.40 Fair 

4 0.41 - 0.60 Moderate 

5 0.61 - 0.80 Substantial 

6 0.81 - 1.00 Almost Perfect 

Source: (Rwanga & Ndambuki, 2017) 

The users of LULC maps need to know how accurate the maps are in order to 

use the data more correctly and efficiently (Plourde & Congalton, 2003). According to 

(J. R. Anderson, 1976) the minimum level of interpretation accuracy in the 

identification of land use and LULC categories from remote sensing data should be at 

least 85%. It is appropriate with this study that the results from accuracy assessment 

showed an overall accuracy ranged from 86% - 96% and also the User‘s accuracy and 

producer‘s accuracy ranged have been shown in  tables (Table 11, Table 12, Table 13, 

Table 14, Table 15). Different (LC) classes had differing producer‘s and user‘s 

accuracy levels indicating different levels of omission and commission errors.  

Moreover, the Kappa coefficient equal to 1 means perfect agreement where as a 

value close to zero means that the agreement is no better than would be expected by 

chance (Rwanga & Ndambuki, 2017). This result showed that there were 4 year (1998, 

2007, 2013, and 2018) have >81. It is stated that Kappa values of more than 0.80 

indicate good classification performance and only year 2003 was obtained which is 
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rated as substantial. Apart from overall classification accuracy, the above 

individualized parameters give a classifier a more detailed description of model 

performance of the particular class or category of his field of interest or study. Since 

overall accuracy, user‘s and producer‘s accuracies, and the Kappa statistics were 

derived from the error matrices to find the reliability and accuracy of the maps 

produced in this study. 

4.2 Mangrove biomass estimating  

For estimations of AGB, we used backscatter characteristics of mangrove forest 

in Southeast Asia and  some researchers ((G. Anderson, Hanson, & Haas, 1993), 

(Zheng et al., 2004), (Mutanga, Adam, & Cho, 2012)) found empirical functions to 

estimate AGB, as derived from relationships between vegetation indices and AGB 

measured on the ground sample plot.  

4.2.1 Single linear regression  

Conventionally, vegetation indices are utilised as predictors because of the 

relationship between spectral information catered by optical remote sensing data and 

vegetation biomass. NDVI, SAVI, GNDVI values of each sampling point locations 

were extracted from vegetation indices map. Each location were created a buffer zone 

with radius is 17.8 m or the total buffer area is 1000m
2
. The mean value of NDVI, 

SAVI, NDVI of the buffer zone was calculate, and ten they were used for developing 

linear regression models. The derived NDVI, SAVI and GNDVI are illustrated in 

Figure 17. The scatterplots that have been generated from the linear regression 

analysis as shown in Figure 11, Figure 12 and Figure 13, indicated the relationship 

between vegetation indices and measured AGB. Simple linear regression model was 

developed from the 70% of the data (27 plots) and 30% of plot we was used for check 

accuracy of model. The correlation between the estimated and observed AGB gave a 

strong coefficient of determination R² are 0.6762 with NDVI, 0.685 with SAVI, 0.672 

with green NDVI (see Table 18). The scatter graph of the estimated and observed 

AGB is presented in Figure 11. 
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Table 18: Summary of simple linear regression models using single independent 

variable 

No. Vegetation index Model R R
2 

Adjusted R
2
 

1 NDVI Y= 148.24x - 40.413 0.822 0.6762 0.667 

2 SAVI Y = 99.093x - 40.7 0.828 0.6851 0.667 

3 GNDVI Y= 231.18x – 60.67 0.820 0.6726 0.677 

 

 

Figure 11: Scatterplots of correlations between aboveground biomass (AGB) and 

Normalized Difference Vegetation Index (NDVI) 
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Figure 12: Scatterplots of Correlations between Aboveground Biomass (AGB) 

and Soil-Adjusted Vegetation Indices (SAVI) 

 

Figure 13: Scatterplots of correlations between aboveground biomass (AGB) and 

green NDVI (GNDVI) 

Coefficient of determination (R
2
) is the proportion of the variance in the 

dependent variable that is predictable from the independent variable. An R
2
 of 0 means 

that dependent variable cannot be predicted from the independent variable and R
2
 of 1 

mean that dependent variable can be predicted without error from the independent 

variable (Draper & Smith, 1998). Coefficient of determination of each vegetation 
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estimate by the vegetation index NDVI, SAVI, GNDVI.  

4.3 AGB Accuracy Assessment 

In this study, an independent validation dataset was used for the models 

accuracy estimation due to the limited number of samples. The model was validated 

using independent validation plots and the predicted AGB was within agreement with 

the measured AGB.  

Figure 10 shows the linear relationships between the estimated AGB by using 

single and the field-based measured AGB. The 30% of the dataset (10 plots) was used 

for model validation to measure the predictive accuracy. The validation dataset was 

independent of the 70% of the dataset (27 plots) used for developing the model. The 

root mean square error (RMSE) was calculated based on the validation data (n=10). 

The result of the RMSE for estimate AGB by NDVI was low with the value of 

7.22861 and the simple linear model gave a strong R² of 0.92 (see Figure 14). 

 

Figure 14: Relationship between NDVI linear regressions to 

estimated AGB and field‐based measured AGB 
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The root mean square error (RMSE) was calculated based on the validation data 

(n=10). The result of the RMSE fir estimate AGB by SAVI was low with the value of 

7.22897 and the simple linear model gave a strong R² of 0.75. 

 

Figure 15: Relationship between SAVI linear regressions to 

estimated AGB and field‐based measured AGB 

The root mean square error (RMSE) was calculated based on the validation data 

(n=10). The result of the RMSE fir estimate AGB by SAVI was low with the value of 

7.975 and the simple linear model gave a strong R² of 0.68. 

 

Figure 16: Relationship between GNDVI linear regressions to 

estimated AGB and field‐based measured AGB 
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In this study the root mean square error (RMSE) are low (no higher than 8) for 

all of estimated AGB method. It‘s mean the error of estimate no higher than 8 ton/ha. 

The study by Goh et al. (2014) found that Study by Goh et al. (2014) found that for 

estimation of AGB, the RMSE values were between 150 and 152 ton/ha respectively. 

Thus, the overall RMSE obtained in this present study was acceptable (Goh, 

Miettinen, Chia, Chew, & Liew, 2014). Using NDVI and SAVI and the similar model, 

Hamdan et al. (2014a) obtained RMSE = 43.77 ton/ha (r2 = 0.59) and 68.21 ton/ha (r2 

= 0.01) respectively (Hamdan, Aziz, & Hasmadi, 2014).  

Table 19: AGB accuracy assessment 

No. Vegetation index R
2 

RMSE 

1 NDVI 0.9261 7.22861 

2 SAVI 0.7529 7.22897 

3 GNDVI 0.6805 7.975 

In this study, the accuracy of each linear regression models are quite high. 

Moreover, the highest accuracy is NDVI model with lowest RMSE (7.22861) and 

highest R
2
 (0.9261).  

The study was showed that the accuracy is quite high but for the study from 

Wicaksono (2016) map accuracy make by the model acquired from ALOS AVNIR-2 

PC bands is higher than model from vegetation indices. He also indicated that 

vegetation indices based on visible bands, such as VARI, ARVI, and MSARVI, were 

not very good in modelling mangrove carbon stock (Wicaksono et al., 2016).  

 

4.4  Spatial Distribution of Mangrove Vegetation Biomass in 1998 and 2018 

Aboveground biomass was mapping in this study base on the NDVI, SAVI, 

GNDVI linear regression model. The AGB was divided into 10 different level (from 

no biomass to > 80 ton/ha) (see Figure 17).  
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Figure 17: Thai Binh AGB mapping base on vegetation indices in 2018 

After build linear regression model for NDVI, SAVI, GNDVI in 2018, we were 

applied that models for 1998 to estimate the changing in aboveground biomass from 

1998 to 2018. 
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Figure 18: Thai Binh AGB mapping base on vegetation indices in 1998 

 The results obtained from the AGB in mangroves from 1998 to 2018 are shown 

in Table 20. The maximum estimated AGB by using NDVI linear regression of 1998 

and 2018 are 59.1 t/ha ha-1 and 78.6 ton/ha respectively. The average of AGB in 1998 

are 22.569 ton/ha and in 2018 is 37.74 ton/ha. The study from Darmawan (2014) was 
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show that Mangrove AGB in Thai Thuy district Thai Binh province = 13.87 ton/ha, in 

Thanh An Can Gio 31.61 ton/ha, in Giao thuy district Nam Dinh province is 13.12 

ton/ha. (Darmawan et al., 2014). Hanh (2016) showed that the average AGB in Dong 

Hung commune, Tien Lang district, Hai Phong city are 36.80 ton/ha (Hanh, 2016). 

The mangrove AGB in the study area is mainly controlled by the environmental 

conditions of the mangrove habitat, as in other natural forests. Human activities play 

an insignificant role in the variation in mangrove AGB since the forest is protected by 

the Xuan Thuy National Park and replanted by NGO and government program. 

Table 20: Table showing estimated AGB by NDVI in 1998 and 2018 

Parameter 1998 2018 Total change 

Total mangrove AGB of the whole area (ton) 62880 187990 125110 

Mean area of mangrove AGB (ton/ha) 22.569 37.745 15.180 

Total area (detect by NDVI ) (ha) 2786 4980 2194 

Maximum AGB (ton/ha) 59.1 78.6 19.5 
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CHAPTER 5: CONCLUSION, LIMITATION, REMOMENDATION  

In this study, the main focus was on assessment of the status of mangrove 

vegetation and estimate the mangrove biomass in coastal area of Thai Binh province. 

The research was guided by two propositions, namely; using RS combination with GIS 

for land cover change detection in the Thai Binh province from 1998 to 2018, and 

using vegetation indices for estimate mangrove aboveground biomass.  

Using RS and GIS, mangrove forest was mapped. The mangrove forest in the 

Thai Binh province occupied an area of about 5874.93ha in 1998, 5935.77 ha in 2003, 

4433.85 ha in 2007, 6345.09ha in 2013 and 6587.88ha in 2018. 

5.1 Limitation of the research 

There are certain limitations in this research. Absence of high-resolution data 

for the study area of study area has made it difficult to detect the changing and 

distribution at the species level. Lack of extensive fieldwork due to time constraints 

has effect to the accuracy of mangrove forest.  

5.2 Recommendation  

 This type of study is advisable in the areas where the present rate of degradation 

and disappearance of mangroves is high and climate change has worsened the 

situation further. The same study if carried out at different sites would give 

more clarity to the present work. 

 Further research can be carried out if different sensors with different 

wavelengths can be taken into consideration.  

 Assessment of damage of the mangroves at the species level can be carried out 

with the help of high-resolution remotely sensed imagery.  

 Various classification accuracy methods can be tried out to give better 

classification results. 

 Various other vegetation indices or other method to estimate AGB to get better 

results (Abburu & Golla, 2015). 

  Establish more survey plot to get more accuracy in estimate ABG 
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AGB in field survey and estimate base on vegetation indices 

plot field AGB AGB 

estimated by 

NDVI 

AGB 

estimated by 

SAVI 

AGB 

estimated by 

GNDVI 

1 35.44178678 41.324243 41.326733 42.49259 

2 56.69417773 54.669153 54.672164 53.212024 

3 41.66123379 37.23245 37.234857 37.289552 

4 30.17078907 30.474218 30.476327 31.41431 

5 14.28737038 32.156409 32.157801 27.829325 

6 29.09526802 29.731879 29.730679 14.133884 

7 40.9920866 31.891911 31.892985 30.016565 

8 40.45927259 45.036226 45.040055 45.579884 

9 67.75361843 64.18994 64.194508 63.654709 

10 39.51777002 44.804359 44.806654 42.134398 

11 15.23279638 24.647205 24.652361 32.422971 

12 24.06631545 18.708333 18.713444 29.934138 

13 44.98298951 15.952085 15.954022 19.490376 

14 55.17515514 57.860944 57.863204 53.48709 

15 37.21570124 47.733665 47.735399 46.663268 

16 19.64770893 16.416592 16.417087 12.171213 

17 12.4459016 24.182898 24.184082 24.284127 

18 22.60486588 7.192793 7.192976 3.34719 

19 35.17073766 49.351382 49.353629 48.507704 

20 46.30490358 55.236737 55.237932 52.375199 

21 13.83521569 23.598763 23.600169 24.344472 

22 19.70027499 15.249522 15.250207 11.493546 

23 21.41467991 19.296593 19.300324 28.8261 

24 56.483021 54.702724 54.706293 54.092763 

25 39.02586974 47.398908 47.401526 47.72799 

26 71.04324146 61.930372 61.935446 64.243286 

27 9.939898557 9.022484 9.023973 8.104289 

28 40.56633347 51.5225 51.526485 50.954025 

29 32.79636695 35.715134 35.717758 37.733145 

30 111.3711832 62.188905 62.193951 66.074229 

31 18.24733994 8.639684 8.641283 10.697906 

32 20.72112338 29.493099 29.494894 29.36577 

33 29.4214 33.272765 33.274893 30.00978 

34 62.95712136 60.644671 60.649031 61.777098 

35 9.570574399 12.26286 12.264417 11.751805 

36 9.190311074 11.583554 11.586462 18.561114 

37 8.663344669 18.556306 18.557565 17.813792 

 


